OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4755

Further Concepts for Advanced Mathematics (FP1)
Thursday 8 JUNE 20061 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .

Section A (36 marks)

1 (i) State the transformation represented by the matrix $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.
(ii) Write down the 2×2 matrix for rotation through 90° anticlockwise about the origin.
(iii) Find the 2×2 matrix for rotation through 90° anticlockwise about the origin, followed by reflection in the x-axis.

2 Find the values of A, B, C and D in the identity

$$
\begin{equation*}
2 x^{3}-3 x^{2}+x-2 \equiv(x+2)\left(A x^{2}+B x+C\right)+D . \tag{5}
\end{equation*}
$$

3 The cubic equation $z^{3}+4 z^{2}-3 z+1=0$ has roots α, β and γ.
(i) Write down the values of $\alpha+\beta+\gamma, \alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$.
(ii) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=22$.

4 Indicate, on separate Argand diagrams,
(i) the set of points z for which $|z-(3-j)| \leqslant 3$,
(ii) the set of points z for which $1<|z-(3-\mathrm{j})| \leqslant 3$,
(iii) the set of points z for which $\arg (z-(3-\mathrm{j}))=\frac{1}{4} \pi$.

5 (i) The matrix $\mathbf{S}=\left(\begin{array}{ll}-1 & 2 \\ -3 & 4\end{array}\right)$ represents a transformation.
(A) Show that the point $(1,1)$ is invariant under this transformation.
(B) Calculate \mathbf{S}^{-1}.
(C) Verify that $(1,1)$ is also invariant under the transformation represented by \mathbf{S}^{-1}.
(ii) Part (i) may be generalised as follows.

If (x, y) is an invariant point under a transformation represented by the non-singular matrix \mathbf{T}, it is also invariant under the transformation represented by \mathbf{T}^{-1}.

Starting with $\mathbf{T}\binom{x}{y}=\binom{x}{y}$, or otherwise, prove this result.
6 Prove by induction that $3+6+12+\ldots+3 \times 2^{n-1}=3\left(2^{n}-1\right)$ for all positive integers n.

Section B (36 marks)
7 A curve has equation $y=\frac{x^{2}}{(x-2)(x+1)}$.
(i) Write down the equations of the three asymptotes.
(ii) Determine whether the curve approaches the horizontal asymptote from above or from below for
(A) large positive values of x,
(B) large negative values of x.
(iii) Sketch the curve.
(iv) Solve the inequality $\frac{x^{2}}{(x-2)(x+1)}>0$.

8 (i) Verify that $2+\mathrm{j}$ is a root of the equation $2 x^{3}-11 x^{2}+22 x-15=0$.
(ii) Write down the other complex root.
(iii) Find the third root of the equation.

9 (i) Show that $r(r+1)(r+2)-(r-1) r(r+1) \equiv 3 r(r+1)$.
(ii) Hence use the method of differences to find an expression for $\sum_{r=1}^{n} r(r+1)$.
(iii) Show that you can obtain the same expression for $\sum_{r=1}^{n} r(r+1)$ using the standard formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$.

