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Section A (36 marks)

1 (i) State the transformation represented by the matrix   [1]

(ii) Write down the 2 ¥  2 matrix for rotation through 90° anticlockwise about the origin. [1]

(iii) Find the 2 ¥  2 matrix for rotation through 90° anticlockwise about the origin, followed by
reflection in the x-axis. [2]

2 Find the values of A, B, C and D in the identity 

[5]

3 The cubic equation has roots 

(i) Write down the values of , and [3]

(ii) Show that [3]

4 Indicate, on separate Argand diagrams,

(i) the set of points z for which [3]

(ii) the set of points z for which [2]

(iii) the set of points z for which [3]

5 (i) The matrix represents a transformation.

(A) Show that the point is invariant under this transformation. [1]

(B) Calculate [2]

(C) Verify that is also invariant under the transformation represented by [1]

(ii) Part (i) may be generalised as follows.

If is an invariant point under a transformation represented by the non-singular
matrix T, it is also invariant under the transformation represented by 

Starting with or otherwise, prove this result. [2]

6 Prove by induction that for all positive integers n. [7] 3 � 6 � 12 � … � 3 � 2n�1 � 3(2n�1)
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1 0
0 1-

Ê
Ë

ˆ
¯ .

2

4755 June 2006

PMT



Section B (36 marks)

7 A curve has equation 

(i) Write down the equations of the three asymptotes. [3]

(ii) Determine whether the curve approaches the horizontal asymptote from above or from below
for

(A) large positive values of x,

(B) large negative values of x. [3]

(iii) Sketch the curve. [4]

(iv) Solve the inequality [3]

8 (i) Verify that is a root of the equation [5]

(ii) Write down the other complex root. [1]

(iii) Find the third root of the equation. [4]

9 (i) Show that [2]

(ii) Hence use the method of differences to find an expression for [6]

(iii) Show that you can obtain the same expression for using the standard formulae

for and [5] S
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